Book
Linear Algebra
Author
Gilbert Strang
Edition
def is_uniq(l): a=set() for i in l: a.add(i) b= list(a) if len(l)==len(b): return True else: return False def is_diag(X): l=X.eigenvalues() if is_uniq(l): return True else: return False def diagonalize(X): if is_diag(X): a= X.eigenvectors_right() l=[] for i in a: l.append(list(i[1][0])) S=transpose(matrix(l)) D=(S^(-1))*X*S return D,S else: print "not diag" A1=matrix([[1,1],[1,1]]) diagonalize(A1) out:( [2 0] [ 1 1] [0 0], [ 1 -1] ) #Therefore A1=S*D*S^(-1) #Where S=matrix([[1,1],[1,-1]]) & D=matrix([[2,0],[0,0]]) A2=matrix([[2,1],[0,0]]) diagonalize(A2) out:( [2 0] [ 1 1] [0 0], [ 0 -2] ) #Therefore A2=S1*D1*S1^(-1) #Where S1=matrix([[1,1],[1,-2]]) & D1=matrix([[2,0],[0,0]])
Solution by:
<Your Name>, <Profession>, <Organization>
<Your Name>, <Profession>, <Organization>