Book
Advanced Engineering Mathematics
Author
Erwin Kreyszig
Edition
8th Edition
#Considering the Identity Cos^2(t) + Sin^2(t) = 1
#This position vector R traces the curve x**2/a**2 + y**2/b**2 = 1, for sweeping t from 0 to 2*pi.
#When a=b we get a circle. Else we get an ellipse.
#Which is demostrated below.
reset()
var('y')
var('a,b,t')
r=vector([a*cos(t),b*sin(t)])
@interact
def ellipse(a=(1..5),b=(1..5),t=(0..64)):
t=t/10
p1=arrow((0,0),(r[0](a,t),r[1](b,t)))
show(implicit_plot(x**2/a**2 + y**2/b**2 == 1, (x, -5,5),(y, -5,5),aspect_ratio=1)+p1)
Solution by:
- Joe Philip Ninan, student, TIFR, Mumbai
- Tony Lijo Jose, student, govt. Engineering college, Sreekrishnapuram
- Syamkrishnan C K, student , govt. Engineering college, Sreekrishnapuram
