g(x) = 4+x
p(x) = 4-x
a0 = integrate(g(x)/4 , (x,-4,0))
p0 = integrate(p(x)/4 , (x,0,4))
G(x)=a0
P(x)=p0
for n in range(1,8):
        
        an1 = integrate(g(x)*cos(n*x)/2, (x,-4,0))
        bn1 = integrate(g(x)*sin(n*x)/2, (x,-4,0))
        an2 = integrate(p(x)*cos(n*x)/2, (x,0,4))
        bn2 = integrate(p(x)*sin(n*x)/2, (x,0,4))       
        G(x) = G(x)+an1*cos(n*pi/4*x) + bn1*sin(n*pi/4*x)
        P(x) = P(x)+an2*cos(n*pi/4*x) + bn2*sin(n*pi/4*x)
print G(x)+P(x)

Kreyszig-10Review-20-U (last edited 2010-12-18 12:46:31 by Shubham)