g(x) = -x
p(x) = x
a0 = integrate(g(x)/2 , (x,-2,0))
p0 = integrate(p(x)/2 , (x,0,2))
G(x)=a0
P(x)=p0
for n in range(1,8):
        
        an1 = integrate(g(x)*cos(n*x)/2, (x,-2,0))
        bn1 = integrate(g(x)*sin(n*x)/2, (x,-2,0))
        an2 = integrate(p(x)*cos(n*x)/2, (x,0,2))
        bn2 = integrate(p(x)*sin(n*x)/2, (x,0,2))       
        G(x) = G(x)+an1*cos(n*pi/2*x) + bn1*sin(n*pi/2*x)
        P(x) = P(x)+an2*cos(n*pi/2*x) + bn2*sin(n*pi/2*x)
print G(x)+P(x)

Kreyszig-10Review-19-U (last edited 2010-12-18 12:47:04 by Shubham)